Hi everybody,

been diving into vehicle dynamics for setup testing in AC recently. I've figured out Aerodynamics, Spingrates & Damper settings but I need some help with the approach and execution of determining ARB roll rates. If you want to read up on the material first, I'd recommend the pdfs from the link at the end. AC gives and uses a lot of values & data derived from real life physics. Prior work on aero, springs & dampers has proven the accuracy of this crossover approach to the game.

This post has a lot of math involved, so take it as it is. We calculate in SI units, so no lb.ft or something. Because we need most of the solutions for follow up equations, rounding and valid numbers are ignored. FYI, I totally don't get the aversion some people have against math, but let's get to business shall we.

mid-engined GT car which generates ~1000 kg of downforce and ~600 kg of drag at ~280 km/h

Total mass = 1100 kg

Total weight = 10791 N

CG = 0,48 @ front

Wheelbase = 2,770m

Sprung mass - front (single wheel) = 226,56 kg

Sprung mass - rear (single wheel) = 245,44 kg

Total sprung mass = 944 kg

Springrates - front = 122500 N/m, rear = 125600 N/m

Ride frequencies - front = 3,7 Hz, rear = 3,6 Hz (undamped natural frequency in ride)

Desired total roll gradient = 0,7 deg/g (degrees of body roll per g of lateral acceleration)

Trackwidths - front = 1,620 m, rear = 1,550 m, average = 1,585 m

Tirerate front = 313524 N/m, rear = 321516 N/m, average = 317520 N/m

Magic Numbers = 55% @ front, 45% @ rear (Total lateral load transfer destribution, called by Milliken, or percentage of roll gradient of front suspension in normal English)

Motion Ratios (MR) are an enigma in AC. There are 1 for Spings, but I have no idea what to choose for ARBs - just set 1 for them as well for now. Because they are 1 for Springs, that means in AC: Springrate = Wheelrate.

The formula for MRs in the pdfs (e.g. pdf 3) cited below is wrong. I've derived the right one as follows:

WR = SR * (MR)^2

WR = Wheelrate

SR = Springrate

MR = Motion ratio

The actual ARB roll rates come from:

Formulae 1: ARB stiffness

FARB MR & RARB MR = 1

Total roll rate (K_phi A) needed for Formulae 1 calculations is:

Formula 2: Total ARB roll rate

Note, that K_W in the equation is wheelrate at a single wheel. I've taken the average of 124050 N/m here. This big one also takes the springrate of the tyres into account.

We have every other value at hand apart from the desired total roll rate:

Formula 3: Desired total roll rate

H, the vertical distance from the roll center axis to the CG I don't have and had to guess.

H = 0,1 m

Being a factor in the divident of the fraction, this value has a huge influence on the solution of this equation.

The roll rates without taking the spring rate of the tyres into account are much simpler:

Formula 4: Front roll rate (w/o tyres)

Formula 5: Rear roll rate (w/o tyres)

done by hand traditionally with pen & paper

Formula 4 (F4)

K_phi F = [pi * (1,620 m)² * (122500 N/m)²] / [180 * (122500 N/m +122500 N/m)]

F5

K_phi R = [pi * (1,550 m)² * (125600 N/m)²] / [180 * (125600 N/m + 125600 N/m)]

F3

K_phi DES = (10791 N * 0,1 m) / (0,7 deg/g)

F2

K_phi A =

pi / 180 * { [1541,6 Nm//deg/g * 317520 N/m * (1,585m)² / 2] / [317520 N/m * (1,585m)² / 2 * pi / 180 - 1541,6 Nm//deg/g } - [pi * 124050 N/m * (1,585 m)² / 2] / 180

simplified:

K_phi A = pi / 180 * (6,149 * 10^14 (Nm)²/deg) / (5419,49 (Nm)²/deg) - 2719,59 Nm

what?? 2*^10^9 ?

in F1:

K_phi FA = 1,9801 *10^9 Nm * 55 * 1/100

again, something completely crazy which can't be real

The solutions for F3, F4 & F5 are understandable, but F2 & F1 are out of the ordinary to say the least. Values that should be looked at are H from F3 and K_W from F2. Any other value is either a constant, a given or a chosen value, all of whom should be solid.

I wanted to take the solutions from F1 and set them as ARB values in the setup menu, but the ones above are useless. The unit for ARB stiffness in the game is Nm.

Here are the questions:

Is this at all the right approach to determine ARB stiffness values?

Are the solutions from F1 the right ones to apply for the ARBs in the game?

Are these at all the right formulae to use?

Are there any mistakes in these calculations?

If you have knowledge of vehicle dynamics / kinematics and/or have read the excelent book from Millikan on these topics, please share that as well.

Most equations taken from pdf #2 here:

http://www.optimumg.com/technical/technical-papers/

(Spings & Dampers section)

looking forward to your replies,

cheeeeeers

been diving into vehicle dynamics for setup testing in AC recently. I've figured out Aerodynamics, Spingrates & Damper settings but I need some help with the approach and execution of determining ARB roll rates. If you want to read up on the material first, I'd recommend the pdfs from the link at the end. AC gives and uses a lot of values & data derived from real life physics. Prior work on aero, springs & dampers has proven the accuracy of this crossover approach to the game.

This post has a lot of math involved, so take it as it is. We calculate in SI units, so no lb.ft or something. Because we need most of the solutions for follow up equations, rounding and valid numbers are ignored. FYI, I totally don't get the aversion some people have against math, but let's get to business shall we.

**Parameters**mid-engined GT car which generates ~1000 kg of downforce and ~600 kg of drag at ~280 km/h

Total mass = 1100 kg

Total weight = 10791 N

CG = 0,48 @ front

Wheelbase = 2,770m

Sprung mass - front (single wheel) = 226,56 kg

Sprung mass - rear (single wheel) = 245,44 kg

Total sprung mass = 944 kg

Springrates - front = 122500 N/m, rear = 125600 N/m

Ride frequencies - front = 3,7 Hz, rear = 3,6 Hz (undamped natural frequency in ride)

Desired total roll gradient = 0,7 deg/g (degrees of body roll per g of lateral acceleration)

Trackwidths - front = 1,620 m, rear = 1,550 m, average = 1,585 m

Tirerate front = 313524 N/m, rear = 321516 N/m, average = 317520 N/m

Magic Numbers = 55% @ front, 45% @ rear (Total lateral load transfer destribution, called by Milliken, or percentage of roll gradient of front suspension in normal English)

**Motion Ratio**Motion Ratios (MR) are an enigma in AC. There are 1 for Spings, but I have no idea what to choose for ARBs - just set 1 for them as well for now. Because they are 1 for Springs, that means in AC: Springrate = Wheelrate.

The formula for MRs in the pdfs (e.g. pdf 3) cited below is wrong. I've derived the right one as follows:

WR = SR * (MR)^2

WR = Wheelrate

SR = Springrate

MR = Motion ratio

**Formulae**The actual ARB roll rates come from:

Formulae 1: ARB stiffness

FARB MR & RARB MR = 1

Total roll rate (K_phi A) needed for Formulae 1 calculations is:

Formula 2: Total ARB roll rate

Note, that K_W in the equation is wheelrate at a single wheel. I've taken the average of 124050 N/m here. This big one also takes the springrate of the tyres into account.

We have every other value at hand apart from the desired total roll rate:

Formula 3: Desired total roll rate

H, the vertical distance from the roll center axis to the CG I don't have and had to guess.

H = 0,1 m

Being a factor in the divident of the fraction, this value has a huge influence on the solution of this equation.

The roll rates without taking the spring rate of the tyres into account are much simpler:

Formula 4: Front roll rate (w/o tyres)

Formula 5: Rear roll rate (w/o tyres)

**Solutions**done by hand traditionally with pen & paper

Formula 4 (F4)

K_phi F = [pi * (1,620 m)² * (122500 N/m)²] / [180 * (122500 N/m +122500 N/m)]

__K_phi F = 2805,52 Nm/deg__F5

K_phi R = [pi * (1,550 m)² * (125600 N/m)²] / [180 * (125600 N/m + 125600 N/m)]

__K_phi R = 2633,30 Nm/deg__F3

K_phi DES = (10791 N * 0,1 m) / (0,7 deg/g)

__K_phi DES = 1541,6 Nm//deg/g__F2

K_phi A =

pi / 180 * { [1541,6 Nm//deg/g * 317520 N/m * (1,585m)² / 2] / [317520 N/m * (1,585m)² / 2 * pi / 180 - 1541,6 Nm//deg/g } - [pi * 124050 N/m * (1,585 m)² / 2] / 180

simplified:

K_phi A = pi / 180 * (6,149 * 10^14 (Nm)²/deg) / (5419,49 (Nm)²/deg) - 2719,59 Nm

__K_phi A = 1,9801 *10^9 Nm__what?? 2*^10^9 ?

in F1:

K_phi FA = 1,9801 *10^9 Nm * 55 * 1/100

__K_phi FA = 1,089 *10^9 Nm__again, something completely crazy which can't be real

**In summary**The solutions for F3, F4 & F5 are understandable, but F2 & F1 are out of the ordinary to say the least. Values that should be looked at are H from F3 and K_W from F2. Any other value is either a constant, a given or a chosen value, all of whom should be solid.

I wanted to take the solutions from F1 and set them as ARB values in the setup menu, but the ones above are useless. The unit for ARB stiffness in the game is Nm.

Here are the questions:

Is this at all the right approach to determine ARB stiffness values?

Are the solutions from F1 the right ones to apply for the ARBs in the game?

Are these at all the right formulae to use?

Are there any mistakes in these calculations?

If you have knowledge of vehicle dynamics / kinematics and/or have read the excelent book from Millikan on these topics, please share that as well.

Most equations taken from pdf #2 here:

http://www.optimumg.com/technical/technical-papers/

(Spings & Dampers section)

looking forward to your replies,

cheeeeeers

Last edited: